Asymptotic Behaviour and Hopf Bifurcation of a Three-dimensional Nonlinear Autonomous System

نویسنده

  • LENKA BARÁKOVÁ
چکیده

A three-dimensional real nonlinear autonomous system of a concrete type is studied. The Hopf bifurcation is analyzed and the existence of a limit cycle is proved. A positively invariant set, which is globally attractive, is found using a suitable Lyapunov-like function. Corollaries for a cubic system are presented. Also, a two-dimensional nonlinear system is studied as a restricted system. An application in economics to the Kodera’s model of inflation is presented. In some sense, the model of inflation is an extension of the dynamic version of the neo-keynesian macroeconomic IS-LM model and the presented results correspond to the results for the IS-LM model. 2000 Mathematics Subject Classification: 34C05, 34D45, 34C23, 90A16, 93A30.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

Center Manifold Theory for Functional Differential Equations of Mixed Type

We study the behaviour of solutions to nonlinear autonomous functional differential equations of mixed type in the neighbourhood of an equilibrium. We show that all solutions that remain sufficiently close to an equilibrium can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. In addition, we provide a Hopf bifurcation theorem for s...

متن کامل

Effects of the Bogie and Body Inertia on the Nonlinear Wheel-set Hunting Recognized by the Hopf Bifurcation Theory

Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical speeds are obtained using Bogoliubov method. A compreh...

متن کامل

DYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS

The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...

متن کامل

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004